

Multistatic Radar Detection and Tracking of Drones

M. Schneebeli¹, A. Leuenberger¹, U. Siegenthaler², P. Wellig²

 $^1{\rm Palindrome}$ Remote Sensing GmbH, Landquart, Switzerland $^2{\rm armasuisse},$ Thun, Switzerland

NATO SET-315/RSY Copenhagen, October 9-11, 2023

hardware design ar microwave remote sensing

Expert in radar signal processing

Expert in surveillance and reconnaissance technologies

electronic warfare

intelligence and

Bi-/Multi-static Radar

Main difficulty: Node synchronization in time and space.

- Clutter peaks for phase synchronization.
- Target simulators for geometrical and amplitude calibration.

The SAMURAI Radar

- C-band: 5.2-5.8 GHz
- 1 transmitter and 2 receivers
- Transmitter
 - 100 W peak power
 - Phased array
 - ► -45°- +45° scan angle (horizontal)
 - Pulse compression

Receiver

- 8 WiFi antennas
- Digital beam forming
- No resolution in elevation

Transmitter

Receiver

Palindrome Target Simulators

- 2-12 GHz
- Two independent receive and transmit channels
- 100 MHz instantaneous bandwidth
- Steerable antenna
- Can be mounted on drones
- Targets
 - Multiple static targets per channel
 - High precision configurable RCS
 - Moving targets with corresponding Doppler shift
 - Micro-Doppler modulation
 - Monostatic target range from 2 to 150 km

Target simulator

Artificially generated trajectories

- One virtual trajectory per receiver and per target simulator.
- Allows precise alignment of SAMURAI RX nodes.
- Multistatic geometry: virtually generated targets do not overlap.

Simulated target overtake

- Illustrative application of multiple generated targets.
- Two targets with different speeds.
- Testing of:
 - Target separation
 - Trajectory building

Simulated target overtake

- Illustrative application of multiple generated targets.
- Two targets with different speeds.
- Testing of:
 - Target separation
 - Trajectory building

Simulated target overtake

- Illustrative application of multiple generated targets.
- Two targets with different speeds.
- Testing of:
 - Target separation
 - Trajectory building

Frack Generation and Fusion with Simulated Targets

- 1. Track generation on individual RX nodes.
- 2. Track fusion.
 - Prerequisite: precise node alignment.
 - Tracks of one target are not always detected on both nodes.
 - Main difficulty: only combine what belongs together.
- 3. Test track fusion with target simulators in a monostatic geometry.

Targets

- 1. Track generation on individual RX nodes.
- 2. Track fusion.
 - Prerequisite: precise node alignment.
 - Tracks of one target are not always detected on both nodes.
 - Main difficulty: only combine what belongs together.
- Test track fusion with target simulators in a monostatic geometry.

New track

Aborted track

rack Generation and Fusion with Simulated Targets

- 1. Track generation on individual RX nodes.
- 2. Track fusion.
 - Prerequisite: precise node alignment.
 - Tracks of one target are not always detected on both nodes.
 - Main difficulty: only combine what belongs together.
- 3. Test track fusion with target simulators in a monostatic geometry.

Conclusion

Detection of Real Targets

Trajectory Targets

- DJI Phantom 4 drone
- Birds (similar RCS as DJI drone)

Introduction

Truck

About us

- Multistatic advantages:
 - No zero Doppler condition on both RX nodes.
 - Less blind zones.
 - Detection redundancy.
 - SNR distribution over detection area.

- DJI Phantom 4 drone
- Birds (similar RCS as DJI drone)
- Truck
- Multistatic advantages:
 - No zero Doppler condition on both RX nodes.
 - Less blind zones.
 - Detection redundancy.
 - SNR distribution over detection area.

Conclusion

Conclusion

Detection of Real Targets

Trajectory Targets

DJI Phantom 4 drone

Introduction

- Birds (similar RCS as DJI drone)
- Truck

About us

- Multistatic advantages:
 - No zero Doppler condition on both RX nodes.
 - Less blind zones.
 - Detection redundancy.
 - SNR distribution over detection area.

Real Targets, further examples

Drone and Truck

- Drone on circular pattern.
- Uninterrupted track building.
- No simultaneous detection of the truck with both RX nodes.

 No concurrent detection of other objects possible within swarm.

Detection evaluation

Target RCS vs. received power

- Above curves are range corrected.
- Apply calibration curves to measured (signal power, range) pairs.

RCS measurement DJI Phantom 4

- Monostatic RCS: -30 dBm² (with high fluctuations of \pm 10 dB)
- Bi-static RCS: To be further evaluated (Difficulty: Radar needs to be re-calibrated for every change in the set-up)

About us

Conclusion and Outlook

Conclusion

- Demonstration of successful multistatic detection and tracking of small targets.
- Crucial synchronization between nodes.
- Target simulator approach allows: geometrical calibration, absolute RCS measurements, testing of trajectory and track fusion process, simulation of complex targets.

Outlook

- Multistatic RCS statistics of drones.
- Improved target identification.
- Drone-mounted target simulator (end of 2023).
- Clutter simulation with target simulator.

 Implement simulated Amplitude-Doppler signatures into target simulator.

Conclusion

- Signatures are modulated on outgoing signal.
- Multiple wind turbines within one range gate or at subsequent range gates are possible.